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The behavior of basins of periodic orbits, for families of elliptic maps in the 2D 
torus depending on a parameter, is studied. We give an explicit formula for 
periodic orbits (i.e., central points of basins), considering also the occurrence of 
singular situations. Such a formula describes the evolution of basins, showing 
that onset and disappearance of periodic orbits cannot be reduced to a simple 
bifurcation scheme. Also, the stochastic features of the strange attractor at the 
border of ellipticity may be related to the dynamics of collapsing basins. 
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The onset of stochasticity in dissipative dynamical  systems is strictly 
involved with the behavior  of the basins of at t ract ion of periodic orbits, as 
shown, for instance, by the class of systems studied within the Fe igenbaum 
scheme of  "period doubling. ''(1'2) As far as we know, analogous  general 
results do not  exist for two-dimensional  mappings.  

Consider,  for instance, the following family of  dissipative auto-  
morphisms in the two-dimensional  torus: 

( 2 c o s 0  c o s 0 - s i n 0 )  (1 
To = \ c o s  0 + sin 0 cos 0 

which has been studied in ref. 3 for 0 ~< 0 ~< n/2. At the limit values, this 
family reduces to two remarkable  cases of conservative systems: T~/2 is the 
well known Anosov "cat"  au tomorphism,  a p ro to type  for chaotic dynamical  
systems; on the contrary,  To, a simple rota t ion of period 4 for all the points 
in the torus, may  be seen as a discrete analog of  an integrable system. The 
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continuous dependence on the parameter 0 and the opposite statistical 
features at the extremes imply some type of order-chaos transition. In ref. 3, 
mostly by a numerical approach, it was shown indeed that: (a) the onset 
of chaos settles down at 0o = arcos(2/3), when the automorphism becomes 
hyperbolic; and (b) such a transition is strictly related to the collapse of 
basins around periodic orbits, with the appearance of a strange attractor. 
The numerical approach, however, did not clarify the features of the 
collapse, even because of the very irregular behavior of the basins. 

Systems like (1) are an example of the larger class of discontinuous 
one-parameter elliptic automorphisms of the two-dimensional torus that 
we shall consider here. The relevance of these systems, besides the fact that 
they could model some very peculiar return maps of flows, consists in 
displaying an unusual route to chaos in two dimensions. Moreover, with a 
direct and analytical insight into the behavior of the basins, we shall obtain 
as a by-product an explicit algorithm to find periodic orbits and a method 
to evaluate their existence intervals. Finally, such an investigation will 
indicate why a simple "universal" behavior cannot be expected in these 
cases, and a link between the basin dynamics and the features of the 
chaotic attractor at the border of ellipticity domain. 

Introducing the notation, we recall some facts about discrete elliptic 
systems in R 2. Let T be a unitary ellitic 2 • 2 matrix, i.e., a matrix 
with eigenvalues 2+ = e  +io, where ~b=arcos[Tr(T/2)]. R 2 is foliated by 
T-invariant parallel ellipses centered in the origin3 4) This means that orbits 
starting from every z o G R  2 (i.e., sequences {z0, Tz0, T2z0 .... }) either fill 
densely the ellipse passing through Zo, or are finitely periodic on it. 
Precisely, if ~b/2~ = m/q is rational, the orbit is q-periodic; otherwise, it is 

o0o0 o0 

0o  
/" ,,, 0 ~ 

/ / ~ ) i  ~ 

o o , ( ( (~y, )  
o 

t 

; ~ ~ i, i i ,I ~ o 0 
0 o0 

00 

Fig. 1. For 0 = 1.1988, four orbits in a period-3 basin, three in a period-17 basin, and one 
in a period-23 basin. 
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Fig. 2. For  0 = 1.35, four orbits in a period-2 basin, two in a period-7 basin, one in a period-18 
basin, and one in a period-44 basin. 

dense. There exists indeed a transformation S of R 2 which maps ellipses 
into circles centered in the origin, the motion on them, STS -1, being a 
rotation of an angle ~b. 

Let j-2 be the 2D torus represented by the unit square with identifica- 
tion of the opposite sides�9 We define T as the nonlinear system induced by 
T in j 2 .  ~, results to be dissipative, in general, because pieces of ]12 may 
overlap in ~-2. A direct inspectation shows that, possibly after a transient, 
orbits in 3 -2 lie in "basins" centered around periodic orbits [as shown, e.g., 
in Figs. 1-3, referring, like the following ones, to the family (1) of 
automorphisms To]. 
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Fig. 3. For  0 = 1.1799, one  single orbit  in a period-3 basin after a transient near a period-75 
basin. 
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Note that the explicit form of T depends on the point it applies to: to 
every orbit {i~} is associated a sequence of integer vectors {nk} defined by 

zk+l =- 7"z~= Tzk--nk (2) 

and the form of T is completely defined by {nk}. Of course, if 
% -  {zl,..., Zp} is a p-periodic orbit in 3 -2 (i.e., TPzk =zk+p =i~) ,  then the 
associated sequence is also p-periodic, and it may be called the "characteristic 
sequence" of %. 

k e m m a .  For a p-periodic orbit %,  let {n~} be the associated 
characteristic sequence defined by (2), and Co a T-invariant ellipse (i.e., 
Tgo = go). If, for k = 1 ..... P, g0 is so small that 

~ + C o - C k c y  -2 (3) 

where ~k + go are the points ~k + 2, ~ ~ go), then 

TCo = TCk- nk = Ck+ 1 

In other words, the set of p ellipses defined by (3) is invariant for T, and 
every single Ck is invariant for TP. 

The proof follows immediately from relation (2): 

TCk -- nk = T(Zk  + go) -- nk = Zk + 1 + go -- Ck + 1 

N o t e  1. When condition (3) holds for g0, it clearly holds for every 
smaller C~: this defines for every Cgp a set of p distinct domains which are 
continuously foliated by invariant ellipses: such a multiple domain will be 
called the "stable basin" of Cgp. This basin is stable in the sense that small 
perturbations of T imply small deformations of ellipses. 

N o t e  2. The characteristic sequence {nk} is the same for all points 
(also nonperiodic) in the stable basin of %. Being associated to stable 
basins and not only to their central periodic orbits, these sequences are 
therefore easily computable. 

N o t e  3. Since T is unitary, T preserves locally (i.e., for sets contained 
in a single basin) the measure d x d y ,  even if the dynamical system is 
globally dissipative. 

N o t e  4. Condition (3) is violated when, for a certain s, the point ~.s2 
overpasses a side of the unit square: then, a change in the sequence is 
required, i.e., up to the step s -  1 the evolution represents a transient before 
the definitive settlement in a basin (an example is given in Fig. 3). This 
means that ellipses are attractors in a larger set, the total basin of the 
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periodic orbit. As we shall see below, in certain conditions elliptic domains 
may deform into polygonal ones. 

Let now T depend continuously on a parameter 0, as in (1). Then 
every orbit cgp and its stable basin will also depend continuously on 0, at 
least for an interval of values of this parameter. We expect, for instance, 
that a basin will exist as long as one of the centers reaches the border of 
3 "-2. Moreover, let 0 + ~  be such that the corresponding rotation ~ is 
irrational with respect to 27c: then orbits fill densely 7"-invariant ellipses in 
the basin. If, for e + 0, qt = lira ~b~, is rational (i.e., ~b/2rc = re~q), the slightly 
modified basin is still foliated, but the ellipses are no longer densely filled 
because orbits on them are periodic, too. So, the foliated structure of the 
basin is preserved for small, continuous variations of 0, while the behavior 
on the ellipses is not. 

Such qualitative considerations will now be made more precise. 
Let ~p=Cgp(O) be a p-periodic orbit with a characteristic sequence 

{nk}. Then 

T [  T z  k - I lk] --  Ilk + 1 = T Z Z k  --  Tnk  -- nk + 1 = Zk + 2 

and iterating p times 

p 

TPzk - 2 Tp JIlk+j l=Zk+p~'Zk 
j=l 

This may be written 

p 

( T P - - I ) Z k  = ~ T P - J n k + j - I  
j=l 

and, since every point may be assumed as the "first" one, putting k = 1 

p 

( T P - I ) ~ , =  ~ T p Jnj (4) 
j=l 

If R p  = R p ( O ) =  ( T  p -  I )  -1 exists, Eq. (4) is formally solved by 

p 

z l=Rp 2 TP-JnJ ( 5 )  

j = l  

Since the characteristic sequence may be computed (Note 2 to the 
Lemma), formula (5) gives the coordinates of the first periodic point in Cgp 
[the others may be obtained by a cyclical permutation of the sequence in (5), 
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or simply applying the automorphism to 2~]. Using the Cauchy-Dunford 
formula, (6) the rhs of (5) assumes a definite and computable form: 

2 sin ~b sin pO/2 
zl - (1 --cos 2~b)(1 - c o s  p~b) 

x ~ cos - - j  q~ T - 1 -  
j = l  

cosi(  ,6, 
Solution (6) of system (4), when Rp exists, is unique: hence two basins with 
the same characteristic sequence cannot coexist, and the number of basins 
with periodicity up to p is finite. Now, the existence of Rp depends both on 
p, the periodicity of the orbit, and ~b. More precisely, when ~b/2rc = m/q, the 
basin consists of periodic points with periodicity p = qp/M(q, p), where 
M(q, p) is the highest comon factor of its arguments. If, moreover, p = rq 
(r entire), then fi=p, TP=L and all points in the stable basin are 
p-periodic. (3, 5) 

But when T p=I, Rp does not exist, and Eq. (4) cannot be solved 
through (5) or (6). We want to show that, even in this case, it is possible 
to obtain a solution zl by a limit procedure on (6). 

T h e o r e m .  The limit of (6) for ~b --, 2rcm/p exists and it is finite, even 
when the periodicity of the basin is equal to or a multiple of the periodicity 
po fT .  

Proof. For ~b/2rc = m/p, noninvertibility of T p -  [ corresponds to a 
singularity in the coefficient of (6): indeed, the double zero of ( 1 -  cos p~b) 
in the denominator is not compensated by the simple zero of sin(p~b/2). But 
since in general 

P 
~P~= TP~- ~ TP-Jnj 

j = l  

and since, in this case, TP~ = ~ for every ~ and T p = I ,  it follows that 

P 

~" T p-jnj = 0 (7) 
j = l  

Therefore also the sum in the rhs of (5) [or (6)] vanishes, and the 
singularity may be removed. By straightforward calculation on (6) [e.g., 
via de l'H6pital's rule) we obtain indeed 



Basins of Periodic Orbits for Elliptic Maps of the Torus 369 

- I - c o s I Q P - J ) ~ ] ~ - - - ~ T - l + ( 2 - J - I - 1 ) s i n [ ( P - J + l ) ~ ] I } n j  

(8) 

Expression (8) represents the limit we looked for. 

Noto. A further singularity appears in (6) for 1 - c o s  2~b=0, i.e., 
p = 2, q~ = rnzc, or 2 _+ = + ] : but these values separate elliptic from hyperbolic 
matrices, and transition to hyperbolicity destroys the basins with the 
appearance of an "attractor" whose features (e.g., the type of fractality) 
have to be investigated case by case. 

As a corollary, in the same hypothesis the shape of a stable basin 
changes discontinuously from ellipses into polygons. We may give a short 
hint on their generation: let ~ be a generic point in the stable basin (say, 
in the neighborhood of 21). Then, ~ k ~ e y 2  for k =  1,..., p may be written 

~ e 3--2 

T ~ -  T ~ - n i  ~ - 2  

~,2~ = T 2 ~  __ Tn  I __ !12 ~ ~ - 2  (9) 

p- - I  
~ p - - l ~  Tp-1~_ ~, Tp-jlljs~--2 

j - i  

The successive condition o n  T P z  would replicate the first one: indeed, 
TP= I and the sum vanishes because of (7). Relations (9) may be made 
explicit: for instance, the second one gives 

{ O<. t~x  + t2 y - - n ] X )  < 1 

O ~ 13X + t4 y-- n]Y) < 1 
(lo) 

where n] x) and n~ y) denote the components of nl, and 

T= ( tl t2 
\ t3 /4) 

Because of (9), there are p pair of inequalities like (10). Each of them 
individuate a strip between parallel lines, and the intersection of p such 
strips generates a polygon around i~. Since the choice of the first neighbor 
is arbitrary, there are p such polygons. 
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The same arguments show that polygons also arise for ~b/2~ = m/q and 
/~ ~ p. For irrational ~b, on the contrary, there is an infinity of distinct 
relations (9): in such a case the intersection of infinite strips generates 
indeed ellipses around central periodic points. 

The components xk and Yk of ~k obey the conditions: 

0~<xk< 1, 0 ~ < y k < l  (11) 

Inequalities (11) apply to the lhs of (6), providing conditions on the angle 
~b (implicitly on 0) for the existence of the p-periodic orbit with its basin. 
For every k one obtains indeed a pair 0k, mi., Ok . . . .  of bounds, and finally 
a pair 

0mi n = m a x  { Ok, min } 
k 

Omax=mikn(Ok . . . .  } 

(12) 

In principle, values (12) of 0 are well defined and solve the problem of finding 
the existence range for a certain Cgp with its basin. But the direct computation 
of bounds (12) from (6) appears to be cumbersome. Moreover, at every 0, 
there coexist several basins, and their splitting is not reducible in general 
to a simple rule: the number, multiplicity, and range of existence of the new 
basins depend indeed in a nontrivial way on both T and 0. This fact makes 
a Feigenbaum-like scheme unseccessful. 

Nevertheless, solutions (6) may be easily plotted. It is simple to follow 
graphically their evolution vs. 0, as shown, for instance, in Figs. 4 and 5. 
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Fig. 4. Evolut ion of central points for the period-7 basin of Fig. 2. Posi t ion 1 corresponds  to 
0 = 1.2650, posit ion 2 to 0 = 1.43545. 
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Fig. 5. 
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Evolution of central points for the period-18 basin of Fig. 2. Posit ion 1 corresponds to 
0 = 1.3058, posit ion 2 to 0 = 1.3665. 

This provides good approximate estimates for bounds (12). Moreover, the 
mechanism determining the features of motion when, for a 0o, there is an 
elliptic-hyperbolic transition [as in example (1)] may now be clarified. 
Since the ~b rotation S T S  1 on circles in R 2 is uniform, in ~--2 the local 
density grows with the local curvature of orbits. In other words, dense 
orbits accumulate at the acute extremities of ellipses. When 0 ~ 0 0 ,  
eccentricity diverges because ellipses degenerate into segments and basins 
are squeezed into parallel lines (Figs. 6 and 7). Being tangent to one 
another, basins no longer exist and periodic or quasiperiodic motion is 
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Fig. 6. A single orbit on the strange attractor at 00 = 0.8410686706�9 
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Fig. 7. 
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An enlarged part of Fig. 6, displaying the fine structure of the attractor. 

destroyed; but a sort of "memory" of the local time of sojourn on stretched 
ellipses may persist in the (possibly highly irregular) behavior on the 
attracting set. The final features of the attractor (its strangeness, the 
stochastic measure on it) inherit therefore those of collapsing basins, whose 
dynamics we have studied above. 
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